Effective Date: 2008-2009 School Year

Hamburg Area School District

Name of Course:	Chemistry PS	Grade Level:	11
Department:	Science	Instructional Time:	180 DAYS
		Length of Course:	1 YEAR
		Period Per Cycle:	7
		Length of Period:	45

Texts and Resources:

Internet Handbook of Chemistry and Physics Laptops Virtual ChemLab (CDRom or Online) Text: *Chemistry*, Prentice Hall 2008 Promethean Board Scheduled lab time Assessments:

Exams Quests Quizzes Research Papers Lab Reports and Activities Projects

Course Name: Chemistry PS Unit: Safety and technology Text: *Chemistry*, Prentice Hall. 2008

Time Line: Yearly course

xt: Chemistry, Prentice Hall. 2008 D. Ottaviani		D. Ottaviani
Essential Content/ Essential Questions	Performance Objectives	Standards/Anchors
Safety	• Students will become familiar with general laboratory safety rules.	3.2.12.A
What Technological skills will be used?	 Students will safely use a variety of laboratory tools, basic equipment, materials, and techniques to solve problems and answer questions. Students will apply accurate measurement knowledge to solve everyday problems. Students will apply basic computer operations and concepts such as touch keyboarding skills and techniques at acceptable speed and accuracy. Students will demonstrate basic word processing and spreadsheet skills. Students will identify legal restrictions in the use of software and the output data. 	S11A.2.2.1 S11A.2.2.2

Course Name: Chemistry PS		
Unit: Problem Solving - Thinking Like a S	cientist	Time Line: Yearly course
Text: Chemistry, Prentice Hall. 2008		D. Ottaviani
How do the science concepts learned in class relate to my life?	 Explain and apply scientific concepts to societal issues using case studies e.g., environmental, health and energy). Discuss scientific and technological advancements in terms of cause and effect. Describe and evaluate the impact that financial considerations have had on specific scientific applications and decisions. e.g., Challenger Shuttle Disaster 	S11A.1.2.1 S11A.1.2.2
What process is used by scientists to solve problems	 Recognize that science uses both direct and indirect observation means to study the world and the universe. Examine the problem and consider the necessary information Generate questions that can be answered through scientific investigation. Propose and analyze a solution. Implement the solution. Evaluate the solution, test redesign, and improve as necessary. Communicate the process and present the solution. Recognize that the application of the scientific process of problem solving often leads to recognition of new problems. 	S11A.1.1.3 S11A.1.1.5 S11A.1.2.1 S11A.2.1.3 S11A.2.1.4 S11A.2.1.5

Course Name: Chemistry PS Unit: Math Skills for Chemistry **Time Line: Yearly course** Text: Chemistry, Prentice Hall. 2008 D. Ottaviani • Convert between scientific notation and S11A 2 1 3 How do I use scientific notation in chemistry? S11A.2.1.5 standard notation. S11A.2.1.3 What does "uncertainty in measurement" Identify the number of significant figures in a • S11A.2.2.1 mean? measured quantity, and in calculated results. • Distinguish between the accuracy, precision, and error of a measurement. S11A.2.1.3 How do I convert between units of mass, • Compare and contrast different measurement S11A.2.1.5 length and volume measurements? systems and select the best measurement S11A.2.2.1 system for a specific situation. S11A.3.1.3 • Distinguish between the mass and weight of an object. • List the basic SI units and the common metric prefixes and their meanings. • Apply appropriate measurement scales when collecting data. • Explain the need to estimate measurements within error of various instruments • Students will apply various forms of dimensional analysis S11A.2.1.5 How do I convert from one temperature • Concert between Centigrade, Fahrenheit, and scale to another? S11A.2.2.1 Kelvin What is density? Define density and specific gravity S11A.2.1.3 • S11A.2.2.1 • Calculate the density of various objects S11A.3.1.2 • Identify that floating objects are less dense S11A.3.1.3 than the medium they are floating in. • Describe how density varies with temp.

Course Name: Chemistry PS Unit: Matter and Change Time Line: Vearly course			
Text: <i>Chemistry</i> , Prentice Hall. 2008	-	D. Ottaviani	
What are the unique properties of water?	 Describe why water has abnormal boiling and freezing points for molecules of similar molecular weight Describe why water is often referred to as the universal solvent Explain why ice expands when it freezes Explain why the colors of a dye separate in paper chromatography 	S11C.1.1.2	
What is meant by the term solubility?	• Define the terms: insoluble, unsaturated, saturated, and supersaturated.	S11C.1.1.2	
What factors affect solubility?	 Use solubility curves to describe the effect of temperature on solubility. Use the concept of polarity to account for water's ability to dissolve many ionic solids. Describe the effect of temperature and external pressure on the solubility of gaseous substances. 	S11C.1.1.2	

Course Name: Chemistry PS		
Unit: Matter and Change	Time Line: Yearly course	
Text: Chemistry, Prentice Hall. 2008	L	D. Ottaviani
How is matter classified?	 Distinguish between chemical and physical properties and between chemical and physical changes. Classify samples of matter in terms of elements, compounds, or mixtures Interpret and create models that represent elements, compounds, and mixtures at the 	\$11C.1.1.2 \$11C.1.1.3
	 Differentiate between the three states of matter (solid, liquid, gas). 	
What is a mixture?	 Distinguish among different types of mixtures: a) homogeneous (solutions) b) heterogeneous (suspensions) c) colloids demonstrate knowledge of appropriate separation techniques. 	S11C.1.1.2
What happens during a chemical change?	 Identify three clues that a chemical change has taken place, and recognize that the composition of matter has changed in each. Apply the Law of Conservation of Mass to Chemical reactions. 	S11A.1.3.1 S11C.2.1.2 S11C.2.1.3
What are Chemical symbols?	• Recognize, explain, and distinguish among common element symbols on the periodic table.	S11A.3.3.1

Course Name: Chemistry PS Unit: Atomic Structure Text: <i>Chemistry</i> , Prentice Hall. 2008	T I	ime Line: Yearly course). <i>Ottaviani</i>
What is an atom and how has atomic theory changed over time?	 Describe Democritus' ideas about atoms. Explain how Dalton improved earlier atomic ideas. 	S11A.1.1.2
What are the subatomic particles?	 Recognize and distinguish characteristics of protons. neutrons, and electrons. Describe the properties of the electron as seen in cathode rays. Describe the structure of atoms according to the J.J. Thompson's Plum Pudding model. Describe how the nucleus was discovered. Describe the structure of atoms according to the Rutherford model. Recognize how models, systems, technologies and theories have changed over time (atomic theory) 	S11A.3.2.1 S11A.3.2.2 S11A.3.2.3 S11C.1.1.1 S11A.1.1.1 S11A.1.1.2 S11A.1.1.3 S11A.1.1.4 S11A.1.1.5
What are isotopes?	 Distinguish between isotopes based on their total neutrons and/or mass numbers Calculate the mass number, atomic number, number of neutrons, and number of protons in a given isotope. Recognize that the elemental mass number listed on the periodic table is an isotopic average 	S11A.3.2.3 S11C.1.1.1

Course Name: Chemistry PS	•	
Unit: Atomic Structure		ime Line: Yearly course
Text: Chemistry, Prentice Hall. 2008	L	D. Ottaviani
What is the current understanding of modern atomic structure?	 Distinguish between the valid parts of the Bohr model of the atom, and those no longer accurate. Describe the energies and positions of electrons according to the quantum mechanical model. Describe how the shapes of orbitals at different sublevels differ. Identify which regions of the periodic table contain different suborbitals (s, p, d, and f). 	S11A.3.2.1 S11A.3.2.2 S11A.3.2.3 S11A.3.3.3
Where are electrons and how are they arranged in atoms?	 Describe how to write the electron configuration of the atom. Develop the electron configuration for several elements by applying the Aufbau principle, the Pauli exclusion principle, and Hunds' rule as needed. Explain why the actual configuration for some elements differ from those predicted by the Aufbau principle. 	S11A3.2.3 S11A.3.3.1 S11A.3.3.2 S11A.3.3.3 S11B.1.1.1

Course Name: Chemistry PS		
Unit: The Periodic Table		ime Line: Yearly course
Text: Chemistry, Prentice Hall. 2008	L	D. Ottaviani
What are the important parts of the periodic table?	 Classify selected elements as metals, nonmetals, or metalloids based on observations of chemical and physical properties. Describe the properties of metals and nonmetals Identify elements by their atomic numbers and atomic masses Locate periods and groups (families) of elements. 	S11A.3.3.1 S11C.1.1.4
How are elements organized in a periodic table?	 Compare early and modern periodic tables. Explain that elements are currently arranged by increasing atomic number. 	S11A.3.3.1
Why is Mendeleev given credit for developing the periodic table?	 Recognize that he published his work (based on increasing mass number) first Recognize that he predicted the properties of two elements that were undiscovered at the time. 	S11C.1.1.4

Course Name: Chemistry PS		
Unit: The Periodic Table	Т	ime Line: Yearly course
Text: Chemistry, Prentice Hall. 2008	L	D. Ottaviani
Are there repeating patterns on the periodic	• Explain how an elements chemical and	S11A.2.1.3
table?	physical properties are associated with the	S11A.3.3.1
	number and arrangement of electrons in its	S11C.1.1.2
	atoms	S11C.1.1.4
	• Predict examine and describe recurring	
	patterns (atomic radius, ionization energy, and	
	electronegitivity) that form the basis of	
	chemical periodicity.	
	• Predict physical and chemical properties of an	
	element based on position on the periodic	
	table.	
	Classify elements based on electron	
	configuration.	

Course Name: Chemistry PS Unit: Ionic and Metallic Bonding Text: <i>Chemistry</i> , Prentice Hall. 2008		Time Line: Yearly course D. Ottaviani
What is an ion?	 Determine the number of valence electrons in an atom of an element. Describe how cations and anions form. List the elements whose atoms tend to gain electrons and those that tend to lose electrons. Write the symbol and charge for an atom or ion, having been given the number of protons, neutrons, and electron, and perform the reverse operation. 	S11C.1.1.1 S11C.1.1.4
How do I determine the name and formula of simple ionic compounds?	 Indicate the electrical charge of an ion containing a specific number of protons and electrons Apply the rules for naming and writing formulas for binary ionic compounds , given the compound's anion and cation name and electrical charge. Apply the rules for naming and writing formulas for compounds with polyatomic ions. 	S11C.1.1.3 S11C.1.1.4
What is a metallic bond?	 Describe the arrangement of valence electrons in metal atoms. Describe how this model of metallic bonding explains the conductivity of metals. 	S11C.1.1.2 S11C.1.1.3

Course Name: Chemistry PSUnit: Covalent BondingText: Chemistry, Prentice Hall. 2008	Time Line: Yearly course D. Ottaviani	
What is meant by the term covalent?	• Distinguish molecular compounds from ionic compounds.	S11C.1.1.3
How do I determine the name and formula for molecular compounds?	 Interpret the prefixes in the names of molecular compounds in terms of their chemical formulas. Apply the rules for naming and writing formulas for binary molecular compounds. 	S11C.1.1.3
How do I determine the name and formula for acids and bases?	• Apply the rules for naming acids and bases to determine the chemical formula for common acids and bases.	S11C.1.1.3

Course Name: Chemistry PS	· · /	
Unit: Chemical Names and Formulas		Time Line: Yearly course
Text: Chemistry, Prentice Hall. 2008		D. Ottaviani
Can I determine the structure of compounds?	 State and apply the octet rule. Draw Lewis structures to demonstrate how electron dot diagrams are used. Determine when two atoms are likely to be joined by a double or triple bond. 	S11A.3.2.2 S11A.3.2.3 S11B.1.1.1
Can the properties of matter be linked to its structure?	 Identify exceptions to the octet rule. Explain the properties of allotropes in terms of the bonding and arrangement of atoms. 	S11B.1.1.1

Course Name: Chemistry PS		
Unit: Chemical Quantities	Time Line: Yearly course	
Text: Chemistry, Prentice Hall. 2008	<i>I</i>	D. Ottaviani
What is the usefulness of the mole concept in chemistry?	 Relate Avogadro's number to a mole of a substance. Calculate the molar mass of a compound, when given its formula and a periodic table. Convert the mass of a substance to the number of moles of a substance, and moles to mass. Calculate the molarity of a solution, and prepare a solution of a specified molarity. Calculate the volume of a quantity of gas at STP. 	S11A.1.1.4 S11A.2.1.3
What is the percent composition of a particular compound?	 Calculate the percent composition by mass of a specified element in a given compound. Interpret an empirical formula. Compare and contrast empirical and molecular formulas. 	S11A.1.1.3 S11A.1.1.4 S11A.2.1.3

Course Name: Chemistry PS	· · /	
Unit: Chemical Reactions	Time Line: Yearly course	
Text: Chemistry, Prentice Hall. 2008		D. Ottaviani
What is meant by "Conservation of Matter"?	 State and apply the Law of Conservation of Matter Identify the parts of a chemical equation. Write and explain balanced chemical equations as related to the Law of Conservation of Matter Construct mole ratios from balanced chemical equations and apply these ratios in mole-mole stoichiometric calculations. Calculate stoichiometric quantities from balanced chemical equations using units of moles mass and volumes of gases at STP 	S11A.1.1.3 S11A.1.3.2
Can I predict the products of a chemical reaction?	 Recognize, the following different types of chemical equations: synthesis, acid/base, decomposition, combustion, single replacement, and double replacement. Predict the products and write the balanced chemical equation for a chemical reaction. Describe the information found in a net ionic equation. Predict the formation of a precipitate in a double-replacement reaction. 	S11A.1.3.2 S11C.2.1.3

Course Name: Chemistry PS Unit: Stoichiometry Text: <i>Chemistry</i> , Prentice Hall. 2008	T I	Y ime Line: Yearly course D. <i>Ottaviani</i>
What is a limiting reagent?	 Given the masses of reactants, predict which reactant will limit the reaction. Given the masses of reactants, calculate the mass of the products produced. Calculate theoretical yield, actual yield, and percent yield, given appropriate information. 	S11A.1.1.3 S11A.1.3.1 S11A.2.1.3 S11A.3.2.1

Course Name: Chemistry PS		• • • • •
Unit: Thermochemistry Text: <i>Chemistry</i> Prentice Hall 2008	Time Line: Yearly course	
What is energy?	 Explain <i>endothermic</i> and <i>exothermic</i> reactions in terms of total energy involved in bond breaking and bond making. State, explain, and give examples of "The Law of Conservation of Energy". Use knowledge of conservation of energy explain common phenomena (e.g., heating and cooling curves,). 	S11A.1.1.3 S11A.3.1.3 S11A.3.2.3 S11C.2.1.2 S11C.2.1.3
What is heat capacity?	 Define heat. Convert among units of heat. Define specific heat. Calculate the heat capacity of various objects 	S11A.1.3.1 S11C.2.1.2

Course Name: Chemistry PS Unit: States of Matter Text: <i>Chemistry</i> , Prentice Hall. 2008	Time Line: Yearly course D. Ottaviani
What does "change of state" mean?	 Describe how solid, liquid, and gas conditions are represented in a phase diagram. Recognize that each substance has a unique set of properties that includes melting point, boiling point, and triple point.

Course Name: Chemistry PS	• • • • • • • • • • • • • • • • • • •	
Unit: The Behavior of Gases		Time Line: Yearly course
Text: <i>Chemistry</i> , Prentice Hall. 2008		D. Ottaviani
What are the properties of gases?	 Explain why gases are easier to compress than solids or liquids are. Describe the assumptions of the kinetic theory as it applies to gases. Define the relationship between the Kelvin temperature and the average kinetic energy of particles. 	\$11C.1.1.2 \$11C.1.1.6
How is the behavior of gases explained by Boyle's Law, Charles' Law, and the Combined Gas law?	 Understand conditions of standard temperature and pressure. Analyze data that relates temperature, pressure, and volume of a gas. Predict the effect of changes in pressure and temperature on the volume of a gas. Apply Boyle's Law, Charles, Law, and the Combined Gas Law to solve problems. 	S11A.1.1.1 S11A.1.1.3 S11A.1.1.4 S11A.1.3.1 S11A.1.3.2 S11A.3.1.2 S11C.1.1.5
What did Avogadro discover about gases?	 Recognize that equal volumes of gases at the same temperature and pressure contain equal numbers of molecules. Relate molar quantities of a gas to its temperature, volume, and pressure. 	S11A.1.1.3 S11A.1.1.4
How is the behavior of gases explained by Daltons Law of Partial Pressures?	 Recognize that the total pressure of a mixture of gases is equal to the sum of the pressure exerted by each gas separately. Recognize that Daltons Law is used when collecting gases over water. 	S11A.1.1.3 S11A.1.1.4

Course Name: Chemistry PS	· · · ·	
Unit: Behavior of Gases	Ti	me Line: Yearly course
Text: Chemistry, Prentice Hall. 2008	D.	Ottaviani
How is the behavior of gases explained by	• Understand that the word <i>effusion</i> refers to the	S11A.1.1.3
Grahm's Law	leakage of a gas through a small hole,	S11A.1.1.4
	whereas <i>diffusion</i> is the speed of a gas	
	through open space.	
	• Recognize that, at the same temperature and	
	pressure, lighter gas molecules will travel at a	
	higher velocity than heavy gas molecules.	
How is the behavior of gases explained by	• State the underlying assumptions behind the	S11A.1.1.1
the Ideal Gas Law?	Ideal Gas Law	S11A.1.1.4
	• Compare and contrast real and ideal gases.	S11A.1.3.1
	• Define R as a physical constant.	S11A.3.2.1
	• Compute the value of an unknown variable in	
	the equation for the ideal gas law.	

Course Name: Chemistry PS		
Unit: Acids, Bases, and Salts		Time Line: Yearly course
Text: Chemistry, Prentice Hall. 2008		D. Ottaviani
What is the difference between an acid and a base?	 Define the properties of acids and bases. Describe strong acids/bases and week acids.bases. Compare and contrast acids and bases as defined by the Arrhenius, Br	S11A.1.1.1
What is pH?	 Define pH. Classify a solution as neutral, acidic, or basic, given the hydrogen-ion or hydroxide-ion concentration. Convert hydrogen-ion concentrations into values of pH and hydroxide-ion concentrations into values of pOH (strong acids and bases only). Demonstrate how acid-base titration is used to calculate the concentration of an acid or a base. Explain the concept of equivalence point in neutralization reactions 	S11A.2.2.1 S11A.2.2.2

Course Name: Chemistry PS Unit: Nuclear Chemistry Text: <i>Chemistry</i> , Prentice Hall. 2008	Ϋ́, Ϋ́, Ϋ́, Ϋ́, Ϋ́, Ϋ́, Ϋ́, Ϋ́,	Time Line: Yearly course D. Ottaviani
What is Nuclear radiation?	 Explain how an unstable nucleus releases energy. Describe the three main types of radiation. Describe the types of decay a radioisotope undergoes. Calculate half-life. 	S11A.1.1.4 S11A.1.1.5 S11C.2.1.2
What is the difference between fission and fusion of atomic nuclei?	 Describe what happens in a nuclear chain reaction. Compare and contrast fission and fusion reactions. 	S11A.1.1.1 S11A.1.2.1 S11A.2.2.2 S11A.3.1.1 S11C.2.1.2