Hamburg Area School District

Name of Course: Computer Aided Drafting 2
Department: Industrial Technology and Engineering

Grade Level: 10-12
Instructional Time: 180 days
Length of Course: 30 cycles
Period Per Cycle: 6
Length of Period: 43 minutes

Texts and Resources:
- Engineering Drawing and Design
- Harnessing AutoCAD 2010
- Using AutoCAD 2010
- Mechanical Drawing – CAD Communications
- Drafting and Design
- Introducing AutoCAD 2010
- AutoCAD and its Applications: Basics
- AutoCAD and its Applications: Advanced
- .autodesk.com
- .afsonl.com
- .thebluebook.com

Assessments:
- Individual Projects
- Group Projects
- Chapter Questions
- Tests and Quizzes
- Self Evaluations
- Rubrics
- Demonstrations
Course Plan

Computer Aided Drafting 2

Course Name: Computer Aided Drafting 2
Unit: CAD Basics Review
Time Line: 4 cycles

<table>
<thead>
<tr>
<th>Essential Content/ Essential Questions</th>
<th>Performance Objectives</th>
<th>Standards/Anchors</th>
</tr>
</thead>
</table>
| What are the fundamentals of sketching? | • Accurately sketch lines, circles, arcs, and other geometric shapes
• Recognize and produce multi-view sketches
• Recognize and sketch isometric drawings
• Utilize the block technique to produce sketches | 3.4.10.B4.
3.4.10.C1. |
| How are lines and lettering used in drafting? | • Identify lines found on a given industry drawing
• Draw ASME standard lines using manual drafting and computer-aided drafting
• Solve engineering problems using manual and computer-aided drafting
• Use lettering equipment to produce freehand letters
• Use a CADD system to create text | 3.4.10.B4. |
| What is geometric construction? | • Draw parallel and perpendicular lines
• Construct bisectors and divides lines and spaces into equal parts
• Accurately draw polygons, tangencies, and ellipses
• Solve an engineering problem by making a formal drawing with geometric constructions from an engineer’s sketch or layout | 3.4.10.B4. |
| What are the basics of multi-view drawings? | • Prepare single and multi-view drawings
• Select appropriate views for presentation
• Draw view enlargements
• Establish run outs
• Explain the difference between first and third angle projections
• Prepare formal multi-view drawings from an engineer’s sketch and actual industry layouts | 3.4.10.E4
3.4.12.E4 |
<table>
<thead>
<tr>
<th>Essential Content/ Essential Questions</th>
<th>Performance Objectives</th>
<th>Standards/Anchors</th>
</tr>
</thead>
</table>
| What are the basic concepts of three dimensional modeling? | • Describe how to locate points in 3D space
• Describe and utilize the right-hand rule of 3D visualization
• Explain the function of the ribbon
• Display 3D objects from preset isometric viewpoints
• Display 3D objects from any desired viewpoint
• Edit a current visual style | 3.4.10.E4
3.4.12.E4
3.4.10.C1. |
| How are primitives and composites created? | • Construct 3D solid primitives
• Explain the dynamic feedback presented when constructing solid primitives
• Create complex solids using the UNION command
• Remove portions of a solid using the SUBTRACT command
• Create a new solid from the interference volume between two solids
• Create regions | 3.4.10.E4
3.4.12.E4
3.4.10.C1. |
| What are the basics of mesh modeling? | • Explain tessellation division and values
• Create mesh primitives
• Create a smoothed mesh object
• Create a refined mesh object
• Construct mesh forms
• Generate a mesh by converting a solid
• Generate a mesh by converting a surface
• Generate a surface by converting a mesh
• Generate a solid by converting a mesh
• Execute editing on mesh objects
• Create a split face on a mesh
• Produce an extruded mesh face
• Apply a crease to mesh subobjects | 3.4.10.E4
3.4.12.E4 |
Essential Content/ Essential Questions

How are 3D models viewed and displayed?

Performance Objectives

- Use the view cube to dynamically rotate the view of the model in 3D space
- Use the view cube to display orthographic plan views of all sides on the model
- Use steering wheels to display a 3D model from any angle
- Use the visual style options to create face and edge style display variations
- Render a 3D model

Standards/Anchors

3.4.10.E4
3.4.12.E4
Hamburg Area School District
Course Plan
Computer Aided Drafting 2
Unit: Essentials of 3D Drafting

<table>
<thead>
<tr>
<th>Essential Content/ Essential Questions</th>
<th>Performance Objectives</th>
<th>Standards/Anchors</th>
</tr>
</thead>
</table>
| How is show motion used to view a model? | • Explain the use of the show motion tool
• Create still shots of 3D models
• Create cinematic shots of 3D models
• Replay single shots and a sequence of shots
• Change the properties of a shot | 3.4.10.E4
3.4.12.E4 |
| What are 3D coordinates and user coordinate systems? | • Describe rectangular, spherical, and cylindrical methods of coordinate entry
• Draw 3D polylines
• Describe the function of the world and user coordinate systems
• Move the user coordinate system to any surface
• Rotate the user coordinate system to any angle
• Change the user coordinate system to match the plane of a geometric object
• Use a dynamic UCS
• Save and manage user coordinate systems
• Restore and use named user coordinate systems
• Control user coordinate system icon visibility in viewports | 3.4.10.E4
3.4.12.E4 |
| How are model space viewports used? | • Describe the function of model space viewports
• Create and save viewport configurations
• Alter the current viewport configuration
• Use multiple viewports to construct a drawing | 3.4.10.E4
3.4.12.E4 |
| How are 3d text and dimensions created? | • Create text with a thickness
• Draw text that is plan to the current view
• Dimension a 3D drawing | 3.4.10.E4
3.4.12.E4 |
Hamburg Area School District
Course Plan
Computer Aided Drafting 2

Course Name: Computer Aided Drafting 2
Unit: Essentials of 3D Drafting
Time Line: 15 cycles

<table>
<thead>
<tr>
<th>Essential Content/ Essential Questions</th>
<th>Performance Objectives</th>
<th>Standards/Anchors</th>
</tr>
</thead>
</table>
| How are solid models extruded and revolted? | • Create solids and surfaces by extruding 2D profiles
• Extrude planar surfaces
• Create symmetrical 3d solids surfaces by revolving 3d profiles
• Revolve planar surfaces
• Use solid extrusions and revolutions as construction tools | 3.4.10.E4
3.4.12.E4 |
| What are sweeps and lofts and how are they used in solid modeling? | • Sweep 2d shapes along a 2d or 3d path to create a solid or surface object
• Create 3d solid or surface objects by lofting a series of cross sections | 3.4.10.E4
3.4.12.E4 |
| How do you work with and create details on solid models? | • Change properties on solids
• Align objects
• Rotate objects in three dimensions
• Mirror objects in three dimensions
• Create 3d arrays
• Fillet solid objects
• Chamfer solid objects
• Thicken a surface into a solid
• Convert planar objects into surfaces
• Slice a solid using various methods
• Constructs details on solid models
• Remove features from solid models | 3.4.10.E4
3.4.12.E4 |
Hamburg Area School District
Course Plan
Computer Aided Drafting 2

Course Name: Computer Aided Drafting 2
Unit: Essentials of 3D Drafting
Time Line: 15 cycles

<table>
<thead>
<tr>
<th>Essential Content/ Essential Questions</th>
<th>Performance Objectives</th>
<th>Standards/Anchors</th>
</tr>
</thead>
</table>
| How are subobjects edited? | • Select subobjects(faces, edges, vertices)
• Edit solids using grips
• Edit face subobjects
• Edit edge subobjects
• Edit vertex subobjects
• Extrude a closed boundary suing the PRESSPULL command
• Extract a wireframe from a 3d solid using the XEDGES command | 3.4.10.E4
3.4.12.E4 |
| How are solid models edited? | • Change the shape and configuration of solid object faces
• Copy and change the color of solid objects edges and faces
• Break apart a composite solid composed of physically separate entities
• Use the SOLIDEDIT command to construct and edit a solid model | 3.4.10.E4
3.4.12.E4 |
| How are solid models displayed and analyzed? | • Control the display of solid models
• Construct a 3d section plane through a solid model
• Adjust the size and location of section planes
• Create a dynamic section of a 3d solid model
• Construct 2d and 3d section blocks
• Create a flat, 2d projection of a 3d solid model
• Create a multi-view layout of solid model using SOLVIEW and SOLDRAW
• Construct a profile of a solid using SOLPROF
• Perform an analysis of a solid model
• Export and import solid model data | 3.4.10.E4
3.4.12.E4 |
<table>
<thead>
<tr>
<th>Essential Content/ Essential Questions</th>
<th>Performance Objectives</th>
<th>Standards/ Anchors</th>
</tr>
</thead>
<tbody>
<tr>
<td>What are the essentials of basic rendering and visual style settings?</td>
<td>• Describe the visual style manage palette</td>
<td>3.4.10.E4</td>
</tr>
<tr>
<td></td>
<td>• Change the settings for visual styles</td>
<td>3.4.12.E4</td>
</tr>
<tr>
<td></td>
<td>• Create custom visual styles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Export visual styles to a tool palette</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Render a scene using sunlight</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Save a rendered images from the Render window</td>
<td></td>
</tr>
<tr>
<td>What materials and available in AutoCAD?</td>
<td>• Attach materials to the objects in a drawing</td>
<td>3.4.10.E4</td>
</tr>
<tr>
<td></td>
<td>• Changes the properties of existing materials</td>
<td>3.4.12.E4</td>
</tr>
<tr>
<td></td>
<td>• Create new materials</td>
<td></td>
</tr>
<tr>
<td>How does one use lighting in AutoCAD?</td>
<td>• Describe the types of lighting in AutoCAD</td>
<td>3.4.10.E4</td>
</tr>
<tr>
<td></td>
<td>• List the user-created lights available in AutoCAD</td>
<td>3.4.12.E4</td>
</tr>
<tr>
<td></td>
<td>• Changes the properties of lights</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Generate and modify shadows</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Add a background to your scene and control its appearance</td>
<td></td>
</tr>
<tr>
<td>What are advanced rendering techniques?</td>
<td>• Make advanced rendering settings</td>
<td>3.4.10.E4</td>
</tr>
<tr>
<td></td>
<td>• Set the resolution for a rendering</td>
<td>3.4.12.E4</td>
</tr>
<tr>
<td></td>
<td>• Save a rendering to an image file</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Add fog/depth cueing to a scene</td>
<td></td>
</tr>
<tr>
<td>How are walkthroughs and flybys used to visualize solid models?</td>
<td>• Create a camera to define a static 3d view</td>
<td>3.4.10.E4</td>
</tr>
<tr>
<td></td>
<td>• Activate and adjust front and back clipping planes.</td>
<td>3.4.12.E4</td>
</tr>
<tr>
<td></td>
<td>• Record a walkthrough of a 3d model to a movie file</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Record a flyby of a 3d model to a movie file</td>
<td></td>
</tr>
<tr>
<td>How are raster, vector, and web graphics used in AutoCAD?</td>
<td>• Compare raster and vector files</td>
<td>3.4.10.E4</td>
</tr>
<tr>
<td></td>
<td>• Import and export raster files using AutoCAD</td>
<td>3.4.12.E4</td>
</tr>
<tr>
<td></td>
<td>• Import and export vector files using AutoCAD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Set image commands to manipulate raster files</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Create DWF, DWFx, and PDF files</td>
<td></td>
</tr>
</tbody>
</table>